Selasa, 13 Desember 2011

Komunikasi Data



Peralatan terminal data (DTE) adalah instrumen akhir yang mengubah informasi penggunake reconverts sinyal atau sinyal yang diterima Ini juga dapat disebut ekor sirkuit. Sebuah perangkat DTE berkomunikasi dengan data circuit-terminating equipment (DCE). DTE / DCE klasifikasi diperkenalkan oleh IBM.
Dua jenis perangkat diasumsikan pada masing-masing ujung kabel yang saling berhubungan untuk kasus hanya menambahkan DTE ke topologi (misalnya ke sebuah hub, DCE), yang juga membawa kasus sepele yang kurang interkoneksi perangkat dari jenis yang sama: DTE -DTE atau DCE-DCE
Kasus-kasus seperti itu perlu kabel crossover, seperti untuk Ethernetatau modem null untuk RS-232.
Sebuah DTE adalah unit fungsional dari stasiun data yang berfungsi sebagai sumber data atau data yang tenggelam dan menyediakan untuk komunikasi data fungsi kontrol harus dilakukan sesuai dengan protokol link.
Peralatan terminal data mungkin satu peralatan atau subsistem yang saling terkait dari berbagai potongan-potongan peralatan yang melakukan semua fungsi yang diperlukan yang diperlukan untuk mengizinkan pengguna untuk berkomunikasi.
Seorang pengguna berinteraksi dengan DTE (misalnya melalui antarmuka mesin-manusia), atau mungkin DTE pengguna.
Biasanya, perangkat DTE adalah terminal (atau komputer meniru terminal), dan DCE adalah sebuah modem.
DTE biasanya konektor laki-laki dan DCE adalah konektor perempuan.
Sebagai aturan umum, bahwa perangkat DCE menyediakan sinyal clock (internal clocking) dan mensinkronisasi perangkat DTE pada jam yang disediakan (clocking eksternal). D-subkonektor mengikuti peraturan lain untuk pin penugasan.
DTE 25 pin perangkat transmisi pada pin 2 dan terima pada pin 3.
25 pin DCE perangkat transmisi pada pin 3 dan terima pada pin 2.
9 pin DTE perangkat transmisi pada pin 3 dan terima pada pin 2.
9 pin DCE perangkat transmisi pada pin 2 dan terima pada pin 3.
Istilah ini juga umumnya digunakan dalam Telco dan Cisco peralatan konteks untuk menunjukkan suatu perangkat [klarifikasi diperlukan] tidak dapat menghasilkan sinyal clock maka PC ke PC Ethernet koneksi juga dapat disebut DTE DTE ke komunikasi. Komunikasi ini dilakukan melalui sebuah kabel "crossover Ethernet sebagai lawan dari PC ke DCE (hub, switch, atau jembatan) komunikasi yang dilakukan melalui kabel Ethernet lurus. 
Memakai sitim transmisi melalui data sircuit-terminatingequipment (DCE) Contoh : DCE, MODEM
DCE harus bertanggung jawab untuk transmisi dan menerima bit-
bit, pada suatu waktu, melalui suatu medium transmisi; dan harus
berinteraksi dengan DTE. Hal ini dilakukan melalui interchange
circuit.
Receiver dari DCE harus memakai teknik encoding yang sama
seperti pada
transmitter dari DCE yang lain.
Pasangan DTE-DCE harus didisain untuk mempunyai interface -
interface pelengkap dan harus mampu berinteraksi secara efektif.

Digunakan standart physical layer protocols untuk interface
antara DTE dan DCE
Karakteristik Penting Dari Interface

• Mekanikal, berhubungan dengan koneksi fisik sebenarnya dipakai untuk menghubungkan DTE ke DCE.
dari DTE dan DCE.
• Elektrikal, yaitu mengenai level tegangan dan timing dari
perubahan tegangan; dan juga menentukan data rate dan
jarak yang dapat dicapai.
• Fungsional, merinci fungsi yang dilaksanakan yang
diperuntukkan bagi berbagai interchange circuits; dapat diklasifikasikan menjadi kategori dari data, kontrol, timing dan ground.

Arsitektur 



Jumat, 09 Desember 2011

Sejarah Mikroprosesor

Pada tahun 1958, seorang insinyur bernama Jack Kilby yang bekerja pada Texas Intruments mencoba memecahkan masalah dengan memikirkan sebuah konsep menggabungkan seluruh komponen elektronika dalam satu blok yang dibuat dari bahan semikonduktor. Terciptalah chip yang pertama, meskipun masih dengan segala kekurangan dan kelemahannya. Beberapa saat setelah itu, Robert Noyce, yang bekerja pada Fairchild Semiconductor Corporation, menemukan hal serupa, meskipun mereka bekerja pada dua tempat yang berbeda.


Sejak penemuan pertama sebuah IC, riset banyak dilakukan untuk menyempurnakan sebuah IC. Beberapa hal yang cukup penting dalam sebuah IC adalah ukuran dan daya listrik yang dibutuhkan sebuah IC untuk berfungsi dengan baik. Saat ini, sebuah IC yang ukurannya sekitar jari kuku manusia, di dalamnya terdapat ratusan juta komponen yang terintegrasi menjadi satu.
Gorden Moore, co-founder perusahaan Intel, pada tahun 1965 memperkirakan bahwa jumlah transistor yang terdapat dalam sebuah IC akan bertambah 2 kali setiap 18 bulan sekali. Kecenderungan peningkatan jumlah transistor ini telah terbukti setelah sekian lama dan diperkirakan akan terus berlanjut.
Sebagai contoh perkembangan IC, sebuah 64-Mbit DRAM yang pertama kali di pasaran pada tahun 1994, terdiri dari 3 juta transistor. Dan microprocessor Intel Pentium 4 terdiri lebih dari 42 juta transistor dan kira-kira terdapat 281 IC didalamnya. Bahkan berdasar pada International Technology Roadmap for Semiconductor (ITRS), diharapkan akan tersedia sebuah chip yang terdiri dari 3 milyar transistor pada tahun 2008.
Umumnya, bahan semikonduktor yang digunakan dalam pembuatan IC, adalah silikon. Beberapa bahan lain pun juga memungkinkan untuk digunakan. Proses pembuatan IC sendiri terdiri dari ratusan step. Meskipun proses pembutan hingga siap untuk digunakan sangatlah rumit, namun keuntungan yang didapat dari fleksibilitas sebuah IC dibandingkan dengan jika tidak menggunakan IC.
Jika ditilik dari sejak penemuan sebuah IC, teknologi IC boleh dibilang masih sangat muda. Belum genap setengah abad dari pertama kali diproduksi, IC telah berperan penting dalam peradaban manusia. Seperti komputer misalnya, yang proses utamanya dikontrol oleh ratusan IC. Komputer merupakan hal penting dalam mendukung perkembangan teknologi lainnya. Sudah sepantasnya kita mengucap syukur kepada Tuhan, yang telah mengizinkan perkembangan teknologi terjadi begitu pesatnya, yang akhirnya membawa kemudahan bagi umat manusia.
Untuk lebih memahami sejarah ditemukannya mikroprosesor, dibawah ini juga disertakan asal-usul ditemukannya mikroprosesor
1971: 4004 Microprocessor
Pada tahun 1971 munculah microprocessor pertama Intel , microprocessor 4004 ini digunakan pada mesin kalkulator Busicom. Dengan penemuan ini maka terbukalah jalan untuk memasukkan kecerdasan buatan pada benda mati.
1972: 8008 Microprocessor 
Pada tahun 1972 munculah microprocessor 8008 yang berkekuatan 2 kali lipat dari pendahulunya yaitu 4004.

1974: 8080 Microprocessor
Menjadi otak dari sebuah komputer yang bernama Altair, pada saat itu terjual sekitar sepuluh ribu dalam 1 bulan
1978: 8086-8088 Microprocessor
Sebuah penjualan penting dalam divisi komputer terjadi pada produk untuk komputer pribadi buatan IBM yang memakai prosesor 8088 yang berhasil mendongkrak nama intel.

1982: 286 Microprocessor
Intel 286 atau yang lebih dikenal dengan nama 80286 adalah sebuah processor yang pertama kali dapat mengenali dan menggunakan software yang digunakan untuk processor sebelumnya.

1985: Intel386™ Microprocessor
Intel 386 adalah sebuah prosesor yang memiliki 275.000 transistor yang tertanam diprosessor tersebut yang jika dibandingkan dengan 4004 memiliki 100 kali lipat lebih banyak dibandingkan dengan 4004

1989: Intel486™ DX CPU Microprocessor
Processor yang pertama kali memudahkan berbagai aplikasi yang tadinya harus mengetikkan command-command menjadi hanya sebuah klik saja, dan mempunyai fungsi komplek matematika sehingga memperkecil beban kerja pada processor.

1993: Intel® Pentium® Processor

Processor generasi baru yang mampu menangani berbagai jenis data seperti suara, bunyi, tulisan tangan, dan foto.

1995: Intel® Pentium® Pro Processor
Processor yang dirancang untuk digunakan pada aplikasi server dan workstation, yang dibuat untuk memproses data secara cepat, processor ini mempunyai 5,5 jt transistor yang tertanam.

1997: Intel® Pentium® II Processor
Processor Pentium II merupakan processor yang menggabungkan Intel MMX yang dirancang secara khusus untuk mengolah data video, audio, dan grafik secara efisien. Terdapat 7.5 juta transistor terintegrasi di dalamnya sehingga dengan processor ini pengguna PC dapat mengolah berbagai data dan menggunakan internet dengan lebih baik.

1998: Intel® Pentium II Xeon® Processor

Processor yang dibuat untuk kebutuhan pada aplikasi server. Intel saat itu ingin memenuhi strateginya yang ingin memberikan sebuah processor unik untuk sebuah pasar tertentu.

1999: Intel® Celeron® Processor
Processor Intel Celeron merupakan processor yang dikeluarkan sebagai processor yang ditujukan untuk pengguna yang tidak terlalu membutuhkan kinerja processor yang lebih cepat bagi pengguna yang ingin membangun sebuah system computer dengan budget (harga) yang tidak terlalu besar. Processor Intel Celeron ini memiliki bentuk dan formfactor yang sama dengan processor Intel jenis Pentium, tetapi hanya dengan instruksi-instruksi yang lebih sedikit, L2 cache-nya lebih kecil, kecepatan (clock speed) yang lebih lambat, dan harga yang lebih murah daripada processor Intel jenis Pentium. Dengan keluarnya processor Celeron ini maka Intel kembali memberikan sebuah processor untuk sebuah pasaran tertentu.

1999: Intel® Pentium® III Processor
Processor Pentium III merupakan processor yang diberi tambahan 70 instruksi baru yang secara dramatis memperkaya kemampuan pencitraan tingkat tinggi, tiga dimensi, audio streaming, dan aplikasi-aplikasi video serta pengenalan suara.

1999: Intel® Pentium® III Xeon® Processor
Intel kembali merambah pasaran server dan workstation dengan mengeluarkan seri Xeon tetapi jenis Pentium III yang mempunyai 70 perintah SIMD. Keunggulan processor ini adalah ia dapat mempercepat pengolahan informasi dari system bus ke processor , yang juga mendongkrak performa secara signifikan. Processor ini juga dirancang untuk dipadukan dengan processor lain yang sejenis.

2000: Intel® Pentium® 4 Processor

Processor Pentium IV merupakan produk Intel yang kecepatan prosesnya mampu menembus kecepatan hingga 3.06 GHz. Pertama kali keluar processor ini berkecepatan 1.5GHz dengan formafactor pin 423, setelah itu intel merubah formfactor processor Intel Pentium 4 menjadi pin 478 yang dimulai dari processor Intel Pentium 4 berkecepatan 1.3 GHz sampai yang terbaru yang saat ini mampu menembus kecepatannya hingga 3.4 GHz.

2001: Intel® Xeon® Processor
Processor Intel Pentium 4 Xeon merupakan processor Intel Pentium 4 yang ditujukan khusus untuk berperan sebagai computer server. Processor ini memiliki jumlah pin lebih banyak dari processor Intel Pentium 4 serta dengan memory L2 cache yang lebih besar pula.

2001: Intel® Itanium® Processor

Itanium adalah processor pertama berbasis 64 bit yang ditujukan bagi pemakain pada server dan workstation serta pemakai tertentu. Processor ini sudah dibuat dengan struktur yang benar-benar berbeda dari sebelumnya yang didasarkan pada desain dan teknologi Intel’s Explicitly Parallel Instruction Computing ( EPIC ).

2002: Intel® Itanium® 2 Process
or
Itanium 2 adalah generasi kedua dari keluarga Itanium

2003: Intel® Pentium® M Processor

Chipset 855, dan Intel® PRO/WIRELESS 2100 adalah komponen dari Intel® Centrino™. Intel Centrino dibuat untuk memenuhi kebutuhan pasar akan keberadaan sebuah komputer yang mudah dibawa kemana-mana.

2004: Intel Pentium M 735/745/755 processors
Dilengkapi dengan chipset 855 dengan fitur baru 2Mb L2 Cache 400MHz system bus dan kecocokan dengan soket processor dengan seri-seri Pentium M sebelumnya.

2004: Intel E7520/E7320 Chipsets

7320/7520 dapat digunakan untuk dual processor dengan konfigurasi 800MHz FSB, DDR2 400 memory, and PCI Express peripheral interfaces.

2005: Intel Pentium 4 Extreme Edition 3.73GHz
Sebuah processor yang ditujukan untuk pasar pengguna komputer yang menginginkan sesuatu yang lebih dari komputernya, processor ini menggunakan konfigurasi 3.73GHz frequency, 1.066GHz FSB, EM64T, 2MB L2 cache, dan HyperThreading.

2005: Intel Pentium D 820/830/840
Processor berbasis 64 bit dan disebut dual core karena menggunakan 2 buah inti, dengan konfigurasi 1MB L2 cache pada tiap core, 800MHz FSB, dan bisa beroperasi pada frekuensi 2.8GHz, 3.0GHz, dan 3.2GHz. Pada processor jenis ini juga disertakan dukungan HyperThreading.

2006: Intel Core 2 Quad Q6600
Processor untuk type desktop dan digunakan pada orang yang ingin kekuatan lebih dari komputer yang ia miliki memiliki 2 buah core dengan konfigurasi 2.4GHz dengan 8MB L2 cache (sampai dengan 4MB yang dapat diakses tiap core ), 1.06GHz Front-side bus, dan thermal design power ( TDP )

2006: Intel Quad-core Xeon X3210/X3220
Processor yang digunakan untuk tipe server dan memiliki 2 buah core dengan masing-masing memiliki konfigurasi 2.13 dan 2.4GHz, berturut-turut , dengan 8MB L2 cache ( dapat mencapai 4MB yang diakses untuk tiap core ), 1.06GHz Front-side bus, dan thermal design power (TDP)
Demikian perkembangan yang dialami oleh prosesor pentium, sampe saat ini update dari prosesor tersebut masih terus bermunculan. Contohnya adalah intel core i3, intel core i5, dan yang terbaru dan paling canggih untuk saat ini adalah intel core i7.

Sinyal Analog dan Sinyal Digital

1. Sinyal Analog
Sinyal analog adalah sinyal data dalam bentuk gelombang yang yang kontinyu, yang membawa informasi dengan mengubah karakteristik gelombang. Dua parameter/ karakteristik terpenting yang dimiliki oleh isyarat analog adalah amplitude dan frekuensi. Isyarat analog biasanya dinyatakan dengan gelombang sinus, mengingat gelombang sinus merupakan dasar untuk semua bentuk isyarat analog. Hal ini didasarkan kenyataan bahwa berdasarkan analisis fourier, suatu sinyal analog dapat diperoleh dari perpaduan sejumlah gelombang sinus. Dengan menggunakan sinyal analog, maka jangkauan transmisi data dapat mencapai jarak yang jauh, tetapi sinyal ini mudah terpengaruh oleh noise. Gelombang pada sinyal analog yang umumnya berbentuk gelombang sinus memiliki tiga variable dasar, yaitu amplitudo, frekuensi dan phase.
• Amplitudo merupakan ukuran tinggi rendahnya tegangan dari sinyal analog.
• Frekuensi adalah jumlah gelombang sinyal analog dalam satuan detik.
• Phase adalah besar sudut dari sinyal analog pada saat tertentu.

2. Sinyal Digital
Sinyal digital merupakan sinyal data dalam bentuk pulsa yang dapat mengalami perubahan yang tiba-tiba dan mempunyai besaran 0 dan 1. Sinyal digital hanya memiliki dua keadaan, yaitu 0 dan 1, sehingga tidak mudah terpengaruh oleh derau/noise, tetapi transmisi dengan sinyal digital hanya mencapai jarak jangkau pengiriman data yang relatif dekat. Biasanya sinyal ini juga dikenal dengan sinyal diskret. Sinyal yang mempunyai dua keadaan ini biasa disebut dengan bit. Bit merupakan istilah khas pada sinyal digital. Sebuah bit dapat berupa nol (0) atau satu (1). Kemungkinan nilai untuk sebuah bit adalah 2 buah (21). Kemungkinan nilai untuk 2 bit adalah sebanyak 4 (22), berupa 00, 01, 10, dan 11. Secara umum, jumlah kemungkinan nilai yang terbentuk oleh kombinasi n bit adalah sebesar 2n buah

Minggu, 04 Desember 2011

Processor atau Microprocessor adalah sebuah perangkat keras yang menjadi otak sebuah komputer dan apabila PC tanpa processor maka PC tidak dapat dijalankan. Processor sering juga disebut sebagai pusat pengendali atau otak komputer yang didukung oleh komponen lainnya. Microprocessor yang lebih sering disebut atau nama lain dari processor adalah pusat pelaksana seluruh kerja komputer yang sekarang ukurannya sudah mencapai Gigahertz (GHz).
Ukuran tersebut adalah hitungan kecepatan prosesor dalam memproses data atau informasi. Processor merupakan suatu IC yang mengontrol keseluruhan jalannya sebuah sistem komputer dan digunakan sebagai pusat atau otak dari komputer yang berfungsi untuk melakukan perhitungan dan menjalankan tugas.

Semakin banyak dan semakin canggih Core yang terdapat di dalam sebuah komputer maka kinerja sebuah komputer tersebut akan lebih cepat. Sebenarnya, sebuah processor inilah yang dinamakan CPU (Central Processing Unit). Tapi tidak tahu bagaimana awalnya, orang menganggap bahwa kotak chasing itulah yang dinamakan CPU, dan salah kaprah ini masih sering berlanjut hingga kini.

Letak sebuah Processor adalah pada socket yang telah disediakan di bagian motherboard, Processor dapat diganti dengan processor yang lain asalkan processor tersebut sesuai dengan socket yang ada pada motherboard. Salah satu yang sangat besar pengaruhnya terhadap kecepatan komputer tergantung dari jenis dan kapasitas processor.

Banyak merk prosesor yang beredar dipasaran diantaranya Intel, AMD, IBM, Apple, Cyrix VIA, dan IDT. Namun ada 2 Perusahaan yang tekenal di dunia sebagai pengembang processor untuk PC yaitu AMD dan Intel. Intel, pertama mengeluarkan produknya yaitu Pentium. Perkembangan Pentium dilakukan hingga saat ini karena Pentium merupakan salah satu processor terbaik yang pernah dipasarkan. Pentium yang pertama bernama Pentium 1 kemudian berkembang menjadi Pentium 4 dan sekarang telah mencapai Dual Core Pentium dan Quad Core Pentium. Keunggulan dari pentium yaitu memiliki kekuatan terhadap panas dan tidak mudah rusak walaupun dipakai hingga 24jam nonstop.

Selain mengandalkan Pentium, Intel juga memiliki Core i3, i5, i7 untuk processor urusan desain grafis. Sedangkan untuk kantoran Intel mengandalkan Celeron dan Dual Celeron yang dapat dibeli dengan harga terjangkau. Untuk sebuah server Intel mengeluarkan Intel Xeon. Selain di atas ada keluarga processor Core 2 yaitu Core 2 Duo dan Core 2 Quad.

Pesaing terbesar Intel yaitu AMD mempunyai banyak beragam processor mulai dari single core sampai quadcore. AMD memiliki keunggulan harga terjangkau dan sangat bagus untuk desain grafis. Contoh produk AMD adalah: AMD Phenom X4, AMD Athlon X2, Athlon X4, AMD Turion dan lain-lain. Kelemahan AMD adalah panas yang terlalu tinggi sehingga dibutuhkan minimal 2 fan di dalam CPU komputer.

Processor bertugas membagi pekerjaan pemrosesan data kepada seluruh komponen komputer, dan ini dilakukan dalam kecepatan yang sangat tinggi. Oleh karena itu processor menjadi sangat panas sehingga biasanya dilengkapi dengan kipas pendingin.

Bagian terpenting dari prosesor terbagi menjadi 3 yaitu :
Aritcmatics Logical Unit (ALU), adalah alat yang melakukan pelaksanaan dasar seperti pelaksanaan aritmatika (tambahan, pengurangan, dan semacamnya), pelaksanaan logis (AND, OR, NOT), dan pelaksanaan perbandingan (misalnya, membandingkan isi sebanyak dua slot untuk kesetaraan). Pada unit inilah dilakukan "kerja" yang nyata;
Control Unit (CU), merupakan suatu alat pengontrolan yang berada dalam komputer yang memberitahukan unit masukan mengenai jenis data, waktu pemasukan, dan tempat penyimpanan didalam primary storage. Control unit juga bertugas memberitahukan kepada arithmatic logic unit mengenai operasi yang harus dilakukan, tempat data diperoleh, dan letak hasil ditempatkan Perangkat-perangkat alat proses bersertaperlengkapan;
Memory Unit (MU), merupakan bagian dari processor yang menyimpan alamat-alamat register data yang diolah oleh ALU dan CU.
Faktor lain yang mempengaruhi kecepatan adalah:
Dual-Core mampu memproses beberapa aplikasi secara paralel. Dengan Hyper-Threading, beberapa tugas dijalankan melalui satu arus, tapi dengan dual-core, tugas-tugas ini dipisah menjadi dua arus dan tiap arus diproses sendiri-sendiri.
Hyper-Threading (HT) memungkinkan 2 pekerjaan untuk dijalankan pada saat yang sama (paralel). Dengan HT, anda bisa menjalankan beberapa aplikasi sekaligus tanpa merasakan lagging/lamban.
L2 Cache: memori kecepatan tinggi tempat menyimpan data yang sering dipakai oleh CPU. RAM juga memori tetapi aksesnya lebih lamban. PC dengan L2 Cache yang besar memungkinkan lebih banyak data yang bisa diakses dari memori ini sehingga keseluruhan sistem bekerja lebih cepat. Cache ini disebut juga secondary cache dan mempunyai chip sendiri; sedangkan primary cache biasanya didalam CPU itu sendiri. Ukurang cache ada yang 512Kb sampai 2Mb atau lebih.
Front Side Bus: Mempengaruhi kecepatan data transfer dari CPU ke RAM dan graphics card dan sebaliknya. PC dengan FSB yang tinggi cocok untuk games dan digital media.
Execute Disable Bit: Menurunkan ancaman sekuriti dari virus seperti memory buffer overflow dimana aplikasi anti-virus tidak bisa menanggulangi.
Enhanced Intel SpeedStep: Menyediakan kemampuan yang maksimal jika diperlukan dan mengurangi jika tidak. Lebih sering dipakai di laptop atau notebook untuk mengirit penggunaan listrik dari baterai.
Extended Memory 64 (64-bit): Sistem dengan 32-bit CPU mempunyai maksimum kapasitas 4GB untuk RAM. Untuk menjalankan aplikasi yang besar dan memerlukan memori lebih besar dari 4GB, data extra akan ditulis di hard-disk sehingga memperlambat prosesnya.
Jenis-jenis Processor:
Socket, yaitu berbentuk kotak persegi yang terdapat pin (kaki) konektor;
Slot, yaitu berbentuk batangan yang ditancapkan pada port yang khusus disediakan untuk processor model slot. Pada umumnya processor jenis slot banyak ditemukan untuk komputer Pentium II dan Pentium III.

Minggu, 27 November 2011

Programmable Logic Controller (PLC)

Perkembangan  industri dewasa ini, khususnya dunia industri  di negara kita, berjalan  amat pesat seiring dengan  meluasnya  jenis produk-produk industri, mulai dari apa yang digolongkan sebagai industri hulu sampai dengan industri hilir. Kompleksitas  pengolahan bahan mentah menjadi bahan baku,  yang berproses baik secara fisika maupun secara kimia, telah memacu  manusia untuk  selalu meningkatkan  dan memperbaiki  unjuk  kerja  sistem  yang mendukung  proses tersebut, agar semakin produktif dan  efisien.  Salah satu yang menjadi perhatian utama dalam hal ini ialah penggunaan  sistem pengendalian proses industri (sistem kontrol industri). 
Dalam  era  industri  modern, sistem  kontrol  proses  industri biasanya merujuk pada otomatisasi sistem kontrol yang digunakan.  Sistem kontrol  industri  dimana peranan manusia masih amat dominan  (misalnya dalam  merespon besaran-besaran proses yang diukur oleh  sistem  kontrol tersebut dengan serangkaian langkah berupa pengaturan panel dan  saklar-saklar  yang  relevan) telah banyak digeser dan digantikan  oleh  sistem kontrol  otomatis.  Sebabnya jelas  mengacu  pada faktor-faktor  yang  mempengaruhi  efisiensi   dan produktivitas  industri  itu sendiri, misalnya faktor human  error  dan tingkat keunggulan yang ditawarkan sistem kontrol tersebut. Salah  satu  sistem kontrol yang amat luas  pemakaiannya  ialah Programmable  Logic  Controller (PLC). Penerapannya  meliputi  berbagai jenis industri mulai dari industri rokok, otomotif, petrokimia, kertas, bahkan  sampai  pada industri tambang,  misalnya   pada pengendalian  turbin  gas  dan  unit industri lanjutan hasil  pertambangan.  Kemudahan transisi  dari sistem kontrol sebelumnya (misalnya dari  sistem  kontrol berbasis relay mekanis) dan kemudahan trouble-shooting dalam konfigurasi sistem merupakan dua faktor utama yang mendorong populernya PLC ini.
Artikel ini mecoba memberikan gambaran ringkas tentang PLC ini dari sudut pandang piranti penyusunnya.

Apakah Sebenarnya PLC itu?

NEMA   (The  National  electrical  Manufacturers   Association) mendefinisikan  PLCsebagai  piranti elektronika   digital   yang menggunakan memori yang bisa diprogram sebagai penyimpan internal  dari sekumpulan instruksi dengan mengimplementasikan fungsi-fungsi  tertentu, seperti  logika,  sekuensial, pewaktuan,  perhitungan,  dan aritmetika, untuk  mengendalikan berbagai jenis mesin ataupun proses melalui  modul I/O digital dan atau analog. PLC merupakan sistem yang dapat memanipulasi, mengeksekusi, dan atau memonitor keadaan proses pada laju yang amat cepat,  dengan dasar  data yang bisa diprogram  dalam  sistem  berbasis mikroprosesor  integral. PLC menerima masukan dan menghasilkan  keluaran sinyal-sinyal listrik untuk mengendalikan suatu sistem. Dengan  demikian besaran-besaran fisika dan kimia yang dikendalikan, sebelum diolah  oleh PLC, akan diubah menjadi sinyal listrik baik analog maupun digital,yang merupakan data dasarnya.. Karakter  proses yang dikendalikan oleh PLC  sendiri  merupakan proses yang sifatnya bertahap, yakni proses itu berjalan  urut untuk mencapai kondisi akhir yang diharapkan. Dengan kata lain proses  itu terdiri beberapa subproses, dimana subproses  tertentu  akan berjalan sesudah  subproses  sebelumnya  terjadi.  Istilah umum  yang digunakan  untuk proses yang berwatak demikian ialah  proses sekuensial (sequential process). Sebagai perbandingan, sistem kontrol yang  populer selain PLC, misalnyaDistributed Control System (DCS), mampu  menangani proses-proses yang  bersifat sekuensial dan juga  kontinyu  (continuous process) serta mencakup loop kendali yang relatif banyak.

Piranti Penyususnan PLC

PLC  yang  diproduksi oleh berbagai perusahaan  sistem  kontrol terkemuka saat ini biasanya mempunyai ciri-ciri sendiri yang  menawarkan keunggulan  sistemnya, baik  dari segi  aplikasi (perangkat  tambahan) maupun modul utama sistemnya. Meskipun demikian pada umumnya setiap PLC (sebagaimana komputer pribadi Anda yang cenderung mengalami standarisasi dan kompatibel satu sama lain) mengandung empat bagian (piranti) berikut ini: 
  1. Modul Catu daya.
  2. Modul CPU.
  3. Modul Perangkat Lunak.
  4. Modul I/O.

 Gambar 2. Interaksi antar modul dalam PLC Trisen TS3000. 

Modul Catu Daya (Power Supply: PS)

PS  memberikan tegangan DC ke berbagai modul PLC  lainnya  selain modul tambahan dengan kemampuan arus total sekitar  20A  sampai  50A, yang sama dengan battery lithium integral (yang digunakan  sebagai  memory backup). Seandainya PS ini gagal atau tegangan bolak balik masukannya turun dari  nilai spesifiknya,  isi memori akan  tetap terjaga.  PLC  buatan Triconex, USA, yakni Trisen TS3000 bahkan mempunyai double power  supply yang berarti apabila satu PS-nya gagal, PS kedua otomatis akan  mengambil alih fungsi catu daya sistem.

Modul CPU

Modul CPU yang disebut juga modul kontroler atau prosesor  terdiri dari dua bagian:
    1. Prosesor
    2. Memori
1. Prosesor berfungsi:
    • mengoperasikan dan mengkomunikasikan modul-modul PLC melalui bus-bus serial atau paralel yang ada.
    • Mengeksekusi program kontrol.
2. Memori, yang berfungsi:
    • Menyimpan informasi digital yang bisa diubah dan  berbentuk  tabel  data, register citra, atau RLL (Relay  Ladder  Logic),  yang merupakan program pengendali proses.
Pada PLC tertentu kadang kita jumpai pula beberapa prosesor sekaligus dalam satu modul, yang ditujukan untuk mendukung keandalan sistem. Beberapa prosesor tersebut bekerja sama dengan suatu prosedur tertentu untuk meningkatkan kinerja pengendalian. Contoh PLC jenis ini ialah Trisen TS3000 mempunyai tiga buah prosesor dengan sistem yang disebut Tripple Redundancy Modular. Kapasitas memori pada PLC juga bervariasi. Trisen  TS3000, misalnya, mempunyai memori 384 Kbyte (SRAM)  untuk program pengguna dan 256 Kbyte (EPROM) untuk sistem operasinya.  Simatic S5  buatan Siemens mempunyai memori EPROM 16Kbyte dan RAM 8 Kbyte.  PLC  FA-3S  Series mempunyai memori total sekitar 16 Kbyte. Kapasitas memori ini tergantung penggunaannya dan seberapa jauh Anda sebagai  mengoptimalisasikan  ruang  memori  PLC yang Anda miliki,  yang  berarti pula tergantung seberapa banyak lokasi yang diperlukan program kontrol  untuk mengendalikan  plant tertentu. Program kontrol untuk  pengaliran bahan bakar dalam turbin gas tentu membutuhkan lokasi memori yang lebih banyak dibandingkan  dengan program kontrol untuk menggerakkan putaran  mekanik robot pemasang  bodi mobil pada industri otomotif. Suatu modul memori tambahan  bisa juga diberikan ke sistem utama apabila  kebutuhan memori memang meningkat.

Modul Program Perangkat Lunak

PLC  mengenal  berbagai  macam  perangkat  lunak,  termasuk  State Language, SFC, dan bahkan C. Yang paling populer digunakan ialah RLL  (Relay   Ladder Logic). Semua  bahasa  pemrograman   tersebut   dibuat berdasarkan  proses sekuensial yang terjadi dalam plant  (sistem  yang dikendalikan). Semua instruksi dalam program akan dieksekusi oleh  modul CPU, dan penulisan program itu bisa dilakukan pada keadan on line maupun off line.  Jadi  PLC  dapat  bisa  ditulisi program kontrol  pada  saat  ia mengendalikan   proses  tanpa  mengganggu pengendalian yang   sedang dilakukan. Eksekusi perangkat lunak tidak akan mempengaruhi operasi I/O yang tengah berlangsung.

Modul I/O

Modul I/O merupakan modul masukan dan modul keluaran yang bertugas mengatur hubungan PLC dengan piranti eksternal atau periferal yang  bisa berupa  suatu komputer host, saklar-saklar, unit penggerak  motor,  dan berbagai macam sumber sinyal yang terdapat dalam plant.

1. Modul masukan

    Modul masukan berfungsi untuk menerima sinyal dari unit pengindera periferal, dan memberikan pengaturan sinyal, terminasi, isolasi,  maupun indikator  keadaan sinyal masukan. Sinyal-sinyal dari piranti  periferal akan di-scan dan keadaannya akan dikomunikasikan melalui modul antarmuka dalam PLC.Beberapa jenis modul masukan di antaranya:  
      - Tegangan  masukan  DC (110, 220, 14, 24, 48, 15-30V)  atau  arus C(4-20mA).
      - Tegangan AC ((110, 240, 24, 48V) atau arus AC (4-20mA). - Masukan TTL (3-15V). - Masukan analog (12 bit). - Masukan word (16-bit/paralel). - Masukan termokopel. - Detektor suhu resistansi (RTD). - Relay arus tinggi. - Relay arus rendah. - Masukan latching (24VDC/110VAC). - Masukan terisolasi (24VDC/85-132VAC). - Masukan cerdas (mengandung mikroprosesor). - Masukan pemosisian (positioning). - Masukan PID (proporsional, turunan, dan integral). - Pulsa kecepatan tinggi. - Dll.

2. Modul keluaran

    Modul keluaran mengaktivasi berbagai macam piranti seperti  aktuator  hidrolik, pneumatik, solenoid, starter motor,  dan  tampilan status  titik-titik periferal yang terhubung dalam sistem.  Fungsi modul  keluaran lainnya mencakup conditioning, terminasi dan  juga pengisolasian  sinyal-sinyal yang ada. Proses aktivasi  itu  tentu saja dilakukan dengan pengiriman sinyal-sinyal diskret dan  analog yang relevan, berdasarkan watak PLC sendiri yang merupakan piranti digital. Beberapa modul keluaran yang lazim saat ini di antaranya:
      - Tegangan DC (24, 48, 110V) atau arus DC (4-20mA - Tegangan AC (110, 240V) atau arus AC (4-20mA). - Keluaran analog (12-bit). - Keluaran word (16-bit/paralel) - Keluaran cerdas. - Keluaran ASCII. - Port komunikasi ganda. 
    Dengan berbagai modul di atas PLC bekerja mengendalikan berbagai plant yang kita miliki. Mengingat sinyal-sinyal yang ditanganinya bervariasi dan merupakan informasi yang memerlukan pemrosesan saat itu juga, maka sistem yang kita miliki tentu memiliki perangkat pendukung yang mampu mengolah secara real time dan bersifat multi tasking,. Anda bayangkan bahwa pada suatu unit pembangkit tenaga listrik misalnya, PLC Anda harus bekerja 24 jam untuk mengukur suhu buang dan kecepatan turbin, dan kemudian mengatur bukaan katup yang menentukan aliran bahan bakar berdasarkan informasi suhu buang dan kecepatan di atas., agar didapatkan putaran generator yang diinginkan! Pada saat yang sama sistem pelumasan turbin dan sistem alarm harus bekerja baik baik di bawah pengendalianPLC! Suatu piranti sistem operasi dan komunikasi data yang andal tentu harus kita gunakan. Teknologi cabling, pemanfaatan serat optik, sistem operasi berbasis real time dan multi tasking semacam Unix, dan fasilitas ekspansi yang memadai untukjaringan komputer merupakan hal yang lazim dalam instalasi PLC saat ini.

Rabu, 16 November 2011

DTE dan DCE


1. Data circuit terminating equipment. 
Sebuah data circuit-terminating peralatan (DCE) adalah perangkat yang berada di antaraperalatan terminal data (DTE) dan rangkaian transmisi data. Hal ini juga disebut dataperalatan komunikasi dan peralatan data carrier.Dalam sebuah stasiun data, DCE melakukan fungsi seperti konversi sinyal, coding, dangaris clocking dan dapat menjadi bagian dari peralatan DTE atau menengah. Interfacingperalatan mungkin diperlukan untuk beberapa peralatan terminal data (DTE) ke dalamrangkaian transmisi atau saluran dan dari sirkuit transmisi atau saluran ke DTE.Meskipun istilah yang paling sering digunakan dengan RS-232, beberapa komunikasidata standar yang mendefinisikan berbagai jenis antarmuka antara DCE dan DTEsebuah. DCE adalah perangkat yang berkomunikasi dengan perangkat DTE dalamstandar ini. Standar yang menggunakan nomenklatur meliputi:* Federal Standard 1037C, MIL-STD-188* RS-232* Beberapa standar ITU-T di seri V (terutama V.24 dan V.35)* Beberapa standar ITU-T di seri X (terutama X.21 dan X.25)Sebagai aturan umum, bahwa perangkat DCE menyediakan sinyal clock (clockinginternal) dan mensinkronisasi perangkat DTE pada jam yang disediakan (clockingeksternal). D-sub konektor mengikuti aturan lain untuk tugas pin. perangkat DTEbiasanya transmisi pada nomor pin konektor 2 dan terima pada nomor pin konektor 3.DCE perangkat hanya yang sebaliknya: pin konektor nomor 2 menerima dan nomor pinkonektor 3 mentransmisikan sinyal.Biasanya, perangkat DTE merupakan terminal (atau komputer), dan DCE adalahmodem.Ketika dua perangkat, yang keduanya atau kedua DTE DCE, harus dihubungkanbersama tanpa modem atau penerjemah media yang sama di antara mereka, semacamkabel crossover harus digunakan, yaitu modem null untuk RS-232 atau seperti biasauntuk Ethernet.
2. Data terminal equipment (DTE).
Data Terminal Equipment (DTE) adalah instrumen akhir yang mengubah informasipengguna menjadi sinyal atau reconverts sinyal yang diterima. Ini juga dapat disebutsirkuit ekor. Sebuah perangkat DTE berkomunikasi dengan data circuit-terminatingperalatan (DCE). DTE / DCE klasifikasi diperkenalkan oleh IBM.Pada dasarnya, V.35 adalah antarmuka serial berkecepatan tinggi yang dirancang untuk mendukung kecepatan data yang lebih tinggi dan konektivitas antara DTE (data-terminal tetap) atau DCEs (peralatan komunikasi data) di atas jaringan digital.Dua jenis perangkat diasumsikan pada setiap ujung kabel interkoneksi untuk kasushanya menambahkan DTE dengan topologi (misalnya untuk sebuah hub, DCE), yangjuga membawa kasus kurang trivial dari interkoneksi perangkat yang sama type: DTE-DTE atau DCE-DCE. Kasus seperti ini perlu kabel crossover, seperti untuk modemEthernet atau null untuk RS-232.Sebuah DTE adalah unit fungsional dari sebuah stasiun data yang berfungsi sebagaisumber data atau data yang tenggelam dan menyediakan komunikasi data fungsi kontrolharus dilakukan sesuai dengan protokol link.Peralatan terminal data mungkin merupakan satu peralatan atau subsistem yang salingterkait beberapa bagian peralatan yang melakukan semua fungsi yang diperlukan yangdiperlukan untuk mengizinkan pengguna untuk berkomunikasi. Seorang penggunaberinteraksi dengan DTE (misalnya melalui antarmuka manusia-mesin), atau DTEmungkin pengguna.Biasanya, perangkat DTE merupakan terminal (atau komputer meniru terminal), danDCE adalah sebuah modem atau perangkat lain milik operator.Sebagai aturan umum, bahwa perangkat DCE menyediakan sinyal clock (clockinginternal) dan mensinkronisasi perangkat DTE pada jam yang disediakan (clockingeksternal). D-sub konektor mengikuti aturan lain untuk tugas pin.* Perangkat pin 25 DTE transmisi pada pin 2 dan terima pada pin 3.* Perangkat pin 25 DCE transmisi pada pin 3 dan terima pada pin 2.* 9 pin perangkat DTE transmisi pada pin 3 dan terima pada pin 2.* Perangkat pin 9 DCE transmisi pada pin 2 dan terima pada pin 3.Istilah ini juga umumnya digunakan dalam konteks Cisco Telco dan peralatan untuk menunjuk suatu alat jaringan, seperti terminal, komputer pribadi, tetapi juga router danjembatan, itu tidak dapat atau tidak dikonfigurasi untuk menghasilkan sinyal clock.Maka PC ke PC koneksi Ethernet juga dapat disebut DTE DTE ke komunikasi.Komunikasi ini dilakukan melalui kabel crossover Ethernet sebagai lawan dari PC keDCE (hub, switch, atau jembatan) komunikasi yang dilakukan melalui kabel Ethernetlurus.

3. PERAN DTE DAN DCE.
DTE, yang merupakan kepanjangan dari Data Terminal Equipment, merujuk ke pengguna peralatan akhir(end-user device), seperti workstation, terminal (merupakan monitor dengan sedikit atau tanpa kemampuan pemrosesan data independen), atau peralatan (misalnya, pengguna antarmuka untuk router), sedangkan DCE, Data Circuit-Terminating Equipment, lebih mengacu kepada perangkat, seperti multiplexer atau modem, yang bertugas memproses sinyal. Yang penting, DCE juga menyediakan sinyal clock untuk mencocokkan transmisi antara DTE dan DCE. Kebanyakan perangkat networking, seperti router dan switch, dapat dikonfigurasi untuk bertindak sebagai DTE atau DCE, tergantung pada konteks di mana mereka digunakan.
DTE dan DCE tersambung melalui kabel khusus, biasanya pendek, yang terpasang pada antarmuka serial pada peralatan. Serial mengacu pada gaya transmisi data di mana pulsa yang mewakili bit mengikuti satu sama lain sepanjang jalur transmisi tunggal. Dengan kata lain, mereka dikeluarkan berurutan, tidak secara bersamaan. Kabel serial adalah salah satu kabel yang membawa transmisi serial.

Rabu, 12 Oktober 2011

Cara Merakit Komputer

Berikut ini akan dibahas mengenai bagaimana cara merakit komputer, terutama bagi mereka yang baru belajar .. dari beberapa referensi yang saya pelajari .. maka berikut ini akan dijelaskan langkah demi langkah cara merakit komputer, mudah-mudahan bermanfaat .. Red. deden
Komponen perakit komputer tersedia di pasaran dengan beragam pilihan kualitas dan harga. Dengan merakit sendiri komputer, kita dapat menentukan jenis komponen, kemampuan serta fasilitas dari komputer sesuai kebutuhan.Tahapan dalam perakitan komputer terdiri dari:
A. Persiapan
B. Perakitan
C. Pengujian
D. Penanganan Masalah


Persiapan
Persiapan yang baik akan memudahkan dalam perakitan komputer serta menghindari permasalahan yang mungkin timbul.Hal yang terkait dalam persiapan meliputi: 
  1. Penentuan Konfigurasi Komputer
  2. Persiapan Kompunen dan perlengkapan
  3. Pengamanan
Penentuan Konfigurasi Komputer
Konfigurasi komputer berkait dengan penentuan jenis komponen dan fitur dari komputer serta bagaimana seluruh komponen dapat bekerja sebagai sebuah sistem komputer sesuai keinginan kita.Penentuan komponen dimulai dari jenis prosessor, motherboard, lalu komponen lainnya. Faktor kesesuaian atau kompatibilitas dari komponen terhadap motherboard harus diperhatikan, karena setiap jenis motherboard mendukung jenis prosessor, modul memori, port dan I/O bus yang berbeda-beda.
Persiapan Komponen dan Perlengkapan
Komponen komputer beserta perlengkapan untuk perakitan dipersiapkan untuk perakitan dipersiapkan lebih dulu untuk memudahkan perakitan. Perlengkapan yang disiapkan terdiri dari:
  • Komponen komputer
  • Kelengkapan komponen seperti kabel, sekerup, jumper, baut dan sebagainya
  • Buku manual dan referensi dari komponen
  • Alat bantu berupa obeng pipih dan philips
Software sistem operasi, device driver dan program aplikasi.
Buku manual diperlukan sebagai rujukan untuk mengatahui diagram posisi dari elemen koneksi (konektor, port dan slot) dan elemen konfigurasi (jumper dan switch) beserta cara setting jumper dan switch yang sesuai untuk komputer yang dirakit.Diskette atau CD Software diperlukan untuk menginstall Sistem Operasi, device driver dari piranti, dan program aplikasi pada komputer yang selesai dirakit.


Pengamanan
Tindakan pengamanan diperlukan untuk menghindari masalah seperti kerusakan komponen oleh muatan listrik statis, jatuh, panas berlebihan atau tumpahan cairan.Pencegahan kerusakan karena listrik statis dengan cara: 
  • Menggunakan gelang anti statis atau menyentuh permukaan logam pada casing sebelum memegang komponen untuk membuang muatan statis.
  • Tidak menyentuh langsung komponen elektronik, konektor atau jalur rangkaian tetapi memegang pada badan logam atau plastik yang terdapat pada komponen. 
Perakitan
Tahapan proses pada perakitan komputer terdiri dari: 
  1. Penyiapan motherboard
  2. Memasang Prosessor
  3. Memasang heatsink
  4. Memasang Modul Memori
  5. memasang Motherboard pada Casing
  6. Memasang Power Supply
  7. Memasang Kabel Motherboard dan Casing
  8. Memasang Drive
  9. Memasang card Adapter
  10. Penyelesaian Akhir 
 1. Penyiapan motherboard
Periksa buku manual motherboard untuk mengetahui posisi jumper untuk pengaturan CPU speed, speed multiplier dan tegangan masukan ke motherboard. Atur seting jumper sesuai petunjuk, kesalahan mengatur jumper tegangan dapat merusak prosessor.


2. Memasang Prosessor
Prosessor lebih mudah dipasang sebelum motherboard menempati casing. Cara memasang prosessor jenis socket dan slot berbeda.Jenis socket 
  1. Tentukan posisi pin 1 pada prosessor dan socket prosessor di motherboard, umumnya terletak di pojok yang ditandai dengan titik, segitiga atau lekukan.
  2. Tegakkan posisi tuas pengunci socket untuk membuka.
  3. Masukkan prosessor ke socket dengan lebih dulu menyelaraskan posisi kaki-kaki prosessor dengan lubang socket. rapatkan hingga tidak terdapat celah antara prosessor dengan socket.
  4. Turunkan kembali tuas pengunci.
 Jenis Slot
  1. Pasang penyangga (bracket) pada dua ujung slot di motherboard sehingga posisi lubang pasak bertemu dengan lubang di motherboard
  2. Masukkan pasak kemudian pengunci pasak pada lubang pasak
Selipkan card prosessor di antara kedua penahan dan tekan hingga tepat masuk ke lubang slot. 

3. Memasang Heatsink
Fungsi heatsink adalah membuang panas yang dihasilkan oleh prosessor lewat konduksi panas dari prosessor ke heatsink.Untuk mengoptimalkan pemindahan panas maka heatsink harus dipasang rapat pada bagian atas prosessor dengan beberapa clip sebagai penahan sedangkan permukaan kontak pada heatsink dilapisi gen penghantar panas.Bila heatsink dilengkapi dengan fan maka konektor power pada fan dihubungkan ke konektor fan pada motherboard.  




4. Memasang Modul Memori
Modul memori umumnya dipasang berurutan dari nomor socket terkecil. Urutan pemasangan dapat dilihat dari diagram motherboard.Setiap jenis modul memori yakni SIMM, DIMM dan RIMM dapat dibedakan dengan posisi lekukan pada sisi dan bawah pada modul.Cara memasang untuk tiap jenis modul memori sebagai berikut.
Jenis SIMM
  1. Sesuaikan posisi lekukan pada modul dengan tonjolan pada slot.
  2. Masukkan modul dengan membuat sudut miring 45 derajat terhadap slot
  3. Dorong hingga modul tegak pada slot, tuas pengunci pada slot akan otomatis mengunci modul.
Jenis DIMM dan RIMM
Cara memasang modul DIMM dan RIMM sama dan hanya ada satu cara sehingga tidak akan terbalik karena ada dua lekukan sebagai panduan. Perbedaanya DIMM dan RIMM pada posisi lekukan
  1. Rebahkan kait pengunci pada ujung slot
  2. sesuaikan posisi lekukan pada konektor modul dengan tonjolan pada slot. lalu masukkan modul ke slot.
  3. Kait pengunci secara otomatis mengunci modul pada slot bila modul sudah tepat terpasang.
 5. Memasang Motherboard pada Casing
Motherboard dipasang ke casing dengan sekerup dan dudukan (standoff). Cara pemasangannya sebagai berikut:
  1. Tentukan posisi lubang untuk setiap dudukan plastik dan logam. Lubang untuk dudukan logam (metal spacer) ditandai dengan cincin pada tepi lubang.
  2. Pasang dudukan logam atau plastik pada tray casing sesuai dengan posisi setiap lubang dudukan yang sesuai pada motherboard.
  3. Tempatkan motherboard pada tray casing sehinga kepala dudukan keluar dari lubang pada motherboard. Pasang sekerup pengunci pada setiap dudukan logam.
  4. Pasang bingkai port I/O (I/O sheild) pada motherboard jika ada.
  5. Pasang tray casing yang sudah terpasang motherboard pada casing dan kunci dengan sekerup.
  6. Memasang Power Supply
Beberapa jenis casing sudah dilengkapi power supply. Bila power supply belum disertakan maka cara pemasangannya sebagai berikut:
  1. Masukkan power supply pada rak di bagian belakang casing. Pasang ke empat buah sekerup pengunci.
  2. HUbungkan konektor power dari power supply ke motherboard. Konektor power jenis ATX hanya memiliki satu cara pemasangan sehingga tidak akan terbalik. Untuk jenis non ATX dengan dua konektor yang terpisah maka kabel-kabel ground warna hitam harus ditempatkan bersisian dan dipasang pada bagian tengah dari konektor power motherboard. Hubungkan kabel daya untuk fan, jika memakai fan untuk pendingin CPU.
7. Memasang Kabel Motherboard dan Casing
Setelah motherboard terpasang di casing langkah selanjutnya adalah memasang kabel I/O pada motherboard dan panel dengan casing.
  1. Pasang kabel data untuk floppy drive pada konektor pengontrol floppy di motherboard
  2. Pasang kabel IDE untuk pada konektor IDE primary dan secondary pada motherboard.
  3. Untuk motherboard non ATX. Pasang kabel port serial dan pararel pada konektor di motherboard. Perhatikan posisi pin 1 untuk memasang.
  4. Pada bagian belakang casing terdapat lubang untuk memasang port tambahan jenis non slot. Buka sekerup pengunci pelat tertutup lubang port lalumasukkan port konektor yang ingin dipasang dan pasang sekerup kembali.
  5. Bila port mouse belum tersedia di belakang casing maka card konektor mouse harus dipasang lalu dihubungkan dengan konektor mouse pada motherboard.
  6. Hubungan kabel konektor dari switch di panel depan casing, LED, speaker internal dan port yang terpasang di depan casing bila ada ke motherboard. Periksa diagram motherboard untuk mencari lokasi konektor yang tepat.
8. Memasang Drive
Prosedur memasang drive hardisk, floppy, CD ROM, CD-RW atau DVD adalah sama sebagai berikut:
  1. Copot pelet penutup bay drive (ruang untuk drive pada casing)
  2. Masukkan drive dari depan bay dengan terlebih dahulu mengatur seting jumper (sebagai master atau slave) pada drive.
  3. Sesuaikan posisi lubang sekerup di drive dan casing lalu pasang sekerup penahan drive.
  4. Hubungkan konektor kabel IDE ke drive dan konektor di motherboard (konektor primary dipakai lebih dulu)
  5. Ulangi langkah 1 samapai 4 untuk setiap pemasangan drive.
  6. Bila kabel IDE terhubung ke du drive pastikan perbedaan seting jumper keduanya yakni drive pertama diset sebagai master dan lainnya sebagai slave.
  7. Konektor IDE secondary pada motherboard dapat dipakai untuk menghubungkan dua drive tambahan.
  8. Floppy drive dihubungkan ke konektor khusus floppy di motherboard
Sambungkan kabel power dari catu daya ke masing-masing drive.

9. Memasang Card Adapter
Card adapter yang umum dipasang adalah video card, sound, network, modem dan SCSI adapter. Video card umumnya harus dipasang dan diinstall sebelum card adapter lainnya. Cara memasang adapter:
  1. Pegang card adapter pada tepi, hindari menyentuh komponen atau rangkaian elektronik. Tekan card hingga konektor tepat masuk pada slot ekspansi di motherboard
  2. Pasang sekerup penahan card ke casing
  3. Hubungkan kembali kabel internal pada card, bila ada.
10. Penyelessaian Akhir
  1. Pasang penutup casing dengan menggeser
  2. sambungkan kabel dari catu daya ke soket dinding.
  3. Pasang konektor monitor ke port video card.
  4. Pasang konektor kabel telepon ke port modem bila ada.
  5. Hubungkan konektor kabel keyboard dan konektor mouse ke port mouse atau poert serial (tergantung jenis mouse).
  6. Hubungkan piranti eksternal lainnya seperti speaker, joystick, dan microphone bila ada ke port yang sesuai. Periksa manual dari card adapter untuk memastikan lokasi port.
Pengujian
Komputer yang baru selesai dirakit dapat diuji dengan menjalankan program setup BIOS. Cara melakukan pengujian dengan program BIOS sebagai berikut:
  1. Hidupkan monitor lalu unit sistem. Perhatikan tampilan monitor dan suara dari speaker.
  2. Program FOST dari BIOS secara otomatis akan mendeteksi hardware yang terpasang dikomputer. Bila terdapat kesalahan maka tampilan monitor kosong dan speaker mengeluarkan bunyi beep secara teratur sebagai kode indikasi kesalahan. Periksa referensi kode BIOS untuk mengetahui indikasi kesalahan yang dimaksud oleh kode beep.
  3. Jika tidak terjadi kesalahan maka monitor menampilkan proses eksekusi dari program POST. ekan tombol interupsi BIOS sesuai petunjuk di layar untuk masuk ke program setup BIOS.
  4. Periksa semua hasil deteksi hardware oleh program setup BIOS. Beberapa seting mungkin harus dirubah nilainya terutama kapasitas hardisk dan boot sequence.
  5. Simpan perubahan seting dan keluar dari setup BIOS.
Setelah keluar dari setup BIOS, komputer akan meload Sistem OPerasi dengan urutan pencarian sesuai seting boot sequence pada BIOS. Masukkan diskette atau CD Bootable yang berisi sistem operasi pada drive pencarian.
Penanganan Masalah
Permasalahan yang umum terjadi dalam perakitan komputer dan penanganannya antara lain:
  1. Komputer atau monitor tidak menyala, kemungkinan disebabkan oleh switch atau kabel daya belum terhubung.
  2. Card adapter yang tidak terdeteksi disebabkan oleh pemasangan card belum pas ke slot/
LED dari hardisk, floppy atau CD menyala terus disebabkan kesalahan pemasangan kabel konektor atau ada pin yang belum pas terhubung.  Selamat Mencoba dan Semoga Bermanfaat.